In physics, many problems can be solved by a separation of scales and thereby become tractable. For example, let’s have a look at surface waves on water: they are rather easy to understand when the water wave-length is much larger or much smaller than the depth of the water, but not if both scales are similar (wikipedia).
To give another example, light scattered by small particles (like fat bubbles in milk, or water drops in a cloud) can be described more easily if the wavelength of the light is much larger (Rayleigh scattering) or much smaller than the particles, but not if it is of the same order of magnitude (Mie scattering). Separation of scales is often key to making a problem tractable by mathematics.
What physicists like even more than separation of spatial scales, is the separation of different temporal scales. For example, consider two variables and
that are influenced by each other:
If the timescales separate, for example , the variable
is basically seen as constant by the variable
. In this case, the variables can be decoupled, and the problem is often solvable. (Sidenote: In very simple and idealized systems without separations of scales, for example during some sort of phase transitions, mathematical physics can still come to the rescue and provide some clean solutions. But in most systems, this is not the case.)
I am convinced that problems do not become easier by a separation of scales only for physics or mathematics. I think that this applies even more to our intuition and our own understanding of the world. Automatically, we try to disentangle systems by using hierarchies and separations of length- and timescales, and if we are unable to do so, our intuition fails, as does the physics analysis.
What about the brain? In my opinion, the brain is one of those system that will defy human attempts to understand it by separating temporal processes or spatial modules. The brain consists of an enormous amount of different temporal and spatial scales that, however, overlap with each other and cannot be easily segregated. For example, on the timescale of few 100 ms, many different processes are non-stationary and therefore relevant at the same time: neuromodulation of many kinds; spike frequency adaptation and presynaptic adaptation and facilitation; diffusion of proteins across spines, or ions across dendrites; calcium spikes; NMDA currents; et cetera. At a timescale of 1000 ms or 10 ms, it is a different but overlapping set of processes that are non-stationary. To put it short, it seems likely to me that the brain consists of a temporal and spatial continuum of processes, rather than a hierarchy.
Why would this be so? Because, as far as I can see, there is no incentive for nature to prevent the entanglement of temporal and spatial scales of all those processes. In contrast, those interactions may offer advantages that emerge randomly by evolution, at the cost of a higher complexity. Nature, which does not need to understand itself, probably does not care much about an increase of complexity, unlike the biologists working to disentangle the chaos.
It is perhaps misleading to personify ‘nature’ and to speak of an ‘incentive’. It is probably more acceptable to derive these processes from ‘entropic forces’, which make any ordered system, including the organic and cellular systems invented by evolution, less ordered and therefore more chaotic over time. Even if there was order once (think of a glass of water which is strictly colored green in the left and blue in the right half), random changes, which is the driving force of evolution, will undo this order (nothing can prevent that green and blue water will mix over time by random motion of its molecules, that is, diffusion).
In addition to the deficiency of our mind and of mathematical tools when it comes to entangled scales, I suspect based on personal experience that humans are to some extent unable to bring together knowledge from different hierarchies. In neuroscience, most researchers stick to one small level of observation and the related processes; and in most cases it is very difficult to bridge the gaps between levels. For example, “autism” can be addressed by a neurologist who thinks about case studies and very specific behavioral observations of her patients; by a geneticists looking for combinations of genes that make a certain autistic feature in humans more likely; or by a neurophysiologist studying neurons in animals or in vitro models of autism, trying to dissect the contribution of neuronal connectivity or ion channel expression. Many people believe (or hope) that with sufficient knowledge and understanding, these different levels of observation will fuse together, resulting in a complete understanding that pervades all levels. I would argue – and I’d like to be disproven – that a more pessimistic view seems to be more realistic and that humans will probably never achieve an understanding of neuronal circuits and the brain that is deep enough to bridge the gaps between the levels.
The limitations of both our mathematical tools and our mind when it comes to complex systems is obvious when we think of deep learning. For this field of machine learning, other than for the brain, we know all the basic principles (because we have defined them ourselves): Back-propagation of errors, gradient descent algorithms for optimization, weight-sharing in convolutional networks, rectified linear units (or maybe LSTM units), and a few more. Compared with the brain, the system is not very complex, and we can observe everything throughout the process without interfering with its operation. Still, although the process is 100% transparent, people struggle and fail to understand what is happening and why. There does not seem to be a simple answer to the question how it works. “What I cannot create, I do not understand”, Feynman famously wrote. But the act of creation does not automatically come with understanding.
Experimental neuroscience might face similar, but probably even more complex problems. The way to “understand” a neuronal process that is accepted by most researchers is a (mathematical or non-mathematical) model that can both reproduce and predict experimental results. However, if biology indeed consists of many processes and components that are entangled in space and time, also a model needs to be built that is entangled on several temporal and spatial scales. This can be done – no problem. However, this model will again resist attempts by mathematics or human intuition to understand it, similar to our current lack of understanding of the less complex deep networks. Therefore, the machine (the model, the computer program) will still be able to deal with the complexity and “understand” the brain, but I am not sure that human intuition will be able to follow.
I don’t want to deny all the pieces of progress that have been made to achieve a better understanding of the brain. I rather want to point out the limitation of the human mind when it comes to putting the pieces together.
Pingback: Annual report of my intuition about the brain | A blog about neurophysiology
Pingback: Annual report of my intuition about the brain (2020) | A blog about neurophysiology